Machine Learning Schulungen

Machine Learning Schulungen

Machine Learning courses

Erfahrungsberichte

Artificial Neural Networks, Machine Learning, Deep Thinking

It was very interactive and more relaxed and informal than expected. We covered lots of topics in the time and the trainer was always receptive to talking more in detail or more generally about the topics and how they were related. I feel the training has given me the tools to continue learning as opposed to it being a one off session where learning stops once you've finished which is very important given the scale and complexity of the topic.

Jonathan Blease - Knowledgepool Group Ltd

Unterkategorien

Machine Learning Schulungsübersicht

Code Name Dauer Übersicht
appliedml Angewandtes Maschinelles Lernen 14 hours Der Übungskurs ist für alle diejenigen gedacht, die "Machine Learning" in praktischen Applikationen anwenden möchten Teilnehmer Dieser Kurs ist für Data Scientists und Statistiker, die Grundkenntnisse in Statistik haben und wissen, wie man R programmiert. Der Schwerpunkt des Kurses liegt auf dem praktischen Aspekt von Daten/Modell-Vorbereitung, Execution, post hoc Analyse und Visualisierung. Das Ziel ist es, den Teilnehmern praktische Kenntnisse im Maschinellen Lernen  zu vermitteln.  Bereichsspezifische Beispiele erhöhen die Relevanz der Schulung für die Teilnehmer.  Naive Bayes Multinomial Modelle Bayesian categorical Datenanalyse Diskriminante Analyse Lineare Regression Logistischge Regression GLM EM Algorithm Mixed Models Zusätzliche Modelle Klassifikation KNN Bayesian Graphik-Modelle Factor Analysis (FA) Principal Component Analysis (PCA) Independent Component Analysis (ICA) Support Vector Machines (SVM) für Regression und Klassifikation Boosting Ensemble Modelle Neural networks Hidden Markov Models (HMM) Space State Modelle Clustering
dladv Advanced Deep Learning 28 hours Machine Learning Limitations Machine Learning, Non-linear mappings Neural Networks Non-Linear Optimization, Stochastic/MiniBatch Gradient Decent Back Propagation Deep Sparse Coding Sparse Autoencoders (SAE) Convolutional Neural Networks (CNNs) Successes: Descriptor Matching Stereo-based Obstacle Avoidance for Robotics Pooling and invariance Visualization/Deconvolutional Networks Recurrent Neural Networks (RNNs) and their optimizaiton Applications to NLP RNNs continued, Hessian-Free Optimization Language analysis: word/sentence vectors, parsing, sentiment analysis, etc. Probabilistic Graphical Models Hopfield Nets, Boltzmann machines, Restricted Boltzmann Machines Hopfield Networks, (Restricted) Bolzmann Machines Deep Belief Nets, Stacked RBMs Applications to NLP , Pose and Activity Recognition in Videos Recent Advances Large-Scale Learning Neural Turing Machines  
predio Machine Learning with PredictionIO 21 hours PredictionIO is an open source Machine Learning Server built on top of state-of-the-art open source stack. Audience This course is directed at developers and data scientists who want to create predictive engines for any machine learning task. Getting Started Quick Intro Installation Guide Downloading Template Deploying an Engine Customizing an Engine App Integration Overview Developing PredictionIO System Architecture Event Server Overview Collecting Data Learning DASE Implementing DASE Evaluation Overview Intellij IDEA Guide Scala API Machine Learning Education and Usage​ Examples Comics Recommendation Text Classification Community Contributed Demo Dimensionality Reducation and usage PredictionIO SDKs (Select One) Java PHP Python Ruby Community Contributed  
mldt Machine Learning and Deep Learning 21 hours This course covers AI (emphasizing Machine Learning and Deep Learning)Machine learning Introduction to Machine Learning Applications of machine learning Supervised Versus Unsupervised Learning Machine Learning Algorithms Regression Classification Clustering Recommender System Anomaly Detection Reinforcement Learning Regression Simple & Multiple Regression Least Square Method Estimating the Coefficients Assessing the Accuracy of the Coefficient Estimates Assessing the Accuracy of the Model Post Estimation Analysis Other Considerations in the Regression Models Qualitative Predictors Extensions of the Linear Models Potential Problems Bias-variance trade off [under-fitting/over-fitting] for regression models Resampling Methods Cross-Validation The Validation Set Approach Leave-One-Out Cross-Validation k-Fold Cross-Validation Bias-Variance Trade-Off for k-Fold The Bootstrap Model Selection and Regularization Subset Selection [Best Subset Selection, Stepwise Selection, Choosing the Optimal Model] Shrinkage Methods/ Regularization [Ridge Regression, Lasso & Elastic Net] Selecting the Tuning Parameter Dimension Reduction Methods Principal Components Regression Partial Least Squares Classification Logistic Regression The Logistic Model cost function Estimating the Coefficients Making Predictions Odds Ratio Performance Evaluation Matrices [Sensitivity/Specificity/PPV/NPV, Precision, ROC curve etc.] Multiple Logistic Regression Logistic Regression for >2 Response Classes Regularized Logistic Regression Linear Discriminant Analysis Using Bayes’ Theorem for Classification Linear Discriminant Analysis for p=1 Linear Discriminant Analysis for p >1 Quadratic Discriminant Analysis K-Nearest Neighbors Classification with Non-linear Decision Boundaries Support Vector Machines Optimization Objective The Maximal Margin Classifier Kernels One-Versus-One Classification One-Versus-All Classification Comparison of Classification Methods Introduction to Deep Learning ANN Structure Biological neurons and artificial neurons Non-linear Hypothesis Model Representation Examples & Intuitions Transfer Function/ Activation Functions Typical classes of network architectures Feed forward ANN. Structures of Multi-layer feed forward networks Back propagation algorithm Back propagation - training and convergence Functional approximation with back propagation Practical and design issues of back propagation learning Deep Learning Artificial Intelligence & Deep Learning Softmax Regression Self-Taught Learning Deep Networks Demos and Applications Lab: Getting Started with R Introduction to R Basic Commands & Libraries Data Manipulation Importing & Exporting data Graphical and Numerical Summaries Writing functions Regression Simple & Multiple Linear Regression Interaction Terms Non-linear Transformations Dummy variable regression Cross-Validation and the Bootstrap Subset selection methods Penalization [Ridge, Lasso, Elastic Net] Classification Logistic Regression, LDA, QDA, and KNN, Resampling & Regularization Support Vector Machine Resampling & Regularization Artificial Neural Network Deep Learning   Note: For ML algorithms, case studies will be used to discuss their application, advantages & potential issues. Analysis of different data sets will be performed using R
Neuralnettf Neural Networks Fundamentals using TensorFlow as Example 28 hours This course will give you knowledge in neural networks and generally in machine learning algorithm,  deep learning (algorithms and applications). This training is more focus on fundamentals, but will help you choosing the right technology : TensorFlow, Caffe, Teano, DeepDrive, Keras, etc. The examples are made in TensorFlow. TensorFlow Basics  Creation, Initializing, Saving, and Restoring TensorFlow variables  Feeding, Reading and Preloading TensorFlow Data  How to use TensorFlow infrastructure to train models at scale  Visualizing and Evaluating models with TensorBoard   TensorFlow Mechanics  Inputs and Placeholders  Build the GraphS o Inference o Loss o Training  Train the Model o The Graph o The Session o Train Loop  Evaluate the Model o Build the Eval Graph o Eval Output   The Perceptron  Activation functions  The perceptron learning algorithm  Binary classification with the perceptron  Document classification with the perceptron  Limitations of the perceptron   From the Perceptron to Support Vector Machines  Kernels and the kernel trick  Maximum margin classification and support vectors   Artificial Neural Networks  Nonlinear decision boundaries  Feedforward and feedback artificial neural networks  Multilayer perceptrons  Minimizing the cost function  Forward propagation  Back propagation  Improving the way neural networks learn   Convolutional Neural Networks  Goals  Model Architecture  Principles  Code Organization  Launching and Training the Model  Evaluating a Model
aiauto Artificial Intelligence in Automotive 14 hours This course covers AI (emphasizing Machine Learning and Deep Learning) in Automotive Industry. It helps to determine which technology can be (potentially) used in multiple situation in a car: from simple automation, image recognition to autonomous decision making. Current state of the technology What is used What may be potentially used Rules based AI  Simplifying decision Machine Learning  Classification Clustering Neural Networks Types of Neural Networks Presentation of working examples and discussion Deep Learning Basic vocabulary  When to use Deep Learning, when not to Estimating computational resources and cost Very short theoretical background to Deep Neural Networks Deep Learning in practice (mainly using TensorFlow) Preparing Data Choosing loss function Choosing appropriate type on neural network Accuracy vs speed and resources Training neural network Measuring efficiency and error Sample usage Anomaly detection Image recognition ADAS        
aiintrozero From Zero to AI 35 hours This course is created for people who have no previous experience in probability and statistics. Probability (3.5h) Definition of probability Binomial distribution Everyday usage exercises Statistics (10.5h) Descriptive Statistics Inferential Statistics Regression Logistic Regression Exercises Intro to programming (3.5h) Procedural Programming Functional Programming OOP Programming Exercises (writing logic for a game of choice, e.g. noughts and crosses) Machine Learning (10.5h) Classification Clustering Neural Networks Exercises (write AI for a computer game of choice) Rules Engines and Expert Systems (7 hours) Intro to Rule Engines Write AI for the same game and combing solutions into hybrid approach
systemml Apache SystemML for Machine Learning 14 hours Apache SystemML is a distributed and declarative machine learning platform. SystemML provides declarative large-scale machine learning (ML) that aims at flexible specification of ML algorithms and automatic generation of hybrid runtime plans ranging from single node, in-memory computations, to distributed computations on Apache Hadoop and Apache Spark. Audience This course is suitable for Machine Learning researchers, developers and engineers seeking to utilize SystemML as a framework for machine learning. Running SystemML Standalone Spark MLContext Spark Batch Hadoop Batch JMLC Tools Debugger IDE Troubleshooting Languages and ML Algorithms DML PyDML Algorithms
dmmlr Data Mining & Machine Learning with R 14 hours Introduction to Data mining and Machine Learning Statistical learning vs. Machine learning Iteration and evaluation Bias-Variance trade-off Regression Linear regression Generalizations and Nonlinearity Exercises Classification Bayesian refresher Naive Bayes Dicriminant analysis Logistic regression K-Nearest neighbors Support Vector Machines Neural networks Decision trees Exercises Cross-validation and Resampling Cross-validation approaches Bootstrap Exercises Unsupervised Learning K-means clustering Examples Challenges of unsupervised learning and beyond K-means Advanced topics Ensemble models Mixed models Boosting Examples Multidimensional reduction Factor Analysis Principal Component Analysis Examples
mlfsas Machine Learning Fundamentals with Scala and Apache Spark 14 hours The aim of this course is to provide a basic proficiency in applying Machine Learning methods in practice. Through the use of the Scala programming language and its various libraries, and based on a multitude of practical examples this course teaches how to use the most important building blocks of Machine Learning, how to make data modeling decisions, interpret the outputs of the algorithms and validate the results. Our goal is to give you the skills to understand and use the most fundamental tools from the Machine Learning toolbox confidently and avoid the common pitfalls of Data Sciences applications. Introduction to Applied Machine Learning Statistical learning vs. Machine learning Iteration and evaluation Bias-Variance trade-off Machine Learning with Python Choice of libraries Add-on tools Regression Linear regression Generalizations and Nonlinearity Exercises Classification Bayesian refresher Naive Bayes Logistic regression K-Nearest neighbors Exercises Cross-validation and Resampling Cross-validation approaches Bootstrap Exercises Unsupervised Learning K-means clustering Examples Challenges of unsupervised learning and beyond K-means
mlrobot1 Machine Learning for Robotics 21 hours This course introduce machine learning methods in robotics applications. It is a broad overview of existing methods, motivations and main ideas in the context of pattern recognition. After short theoretical background, participants will perform simple exercise using open source (usually R) or any other popular software. Regression Probabilistic Graphical Models Boosting Kernel Methods Gaussian Processes Evaluation and Model Selection Sampling Methods Clustering CRFs Random Forests IVMs
annmldt Artificial Neural Networks, Machine Learning, Deep Thinking 21 hours DAY 1 - ARTIFICIAL NEURAL NETWORKS Introduction and ANN Structure. Biological neurons and artificial neurons. Model of an ANN. Activation functions used in ANNs. Typical classes of network architectures . Mathematical Foundations and Learning mechanisms. Re-visiting vector and matrix algebra. State-space concepts. Concepts of optimization. Error-correction learning. Memory-based learning. Hebbian learning. Competitive learning. Single layer perceptrons. Structure and learning of perceptrons. Pattern classifier - introduction and Bayes' classifiers. Perceptron as a pattern classifier. Perceptron convergence. Limitations of a perceptrons. Feedforward ANN. Structures of Multi-layer feedforward networks. Back propagation algorithm. Back propagation - training and convergence. Functional approximation with back propagation. Practical and design issues of back propagation learning. Radial Basis Function Networks. Pattern separability and interpolation. Regularization Theory. Regularization and RBF networks. RBF network design and training. Approximation properties of RBF. Competitive Learning and Self organizing ANN. General clustering procedures. Learning Vector Quantization (LVQ). Competitive learning algorithms and architectures. Self organizing feature maps. Properties of feature maps. Fuzzy Neural Networks. Neuro-fuzzy systems. Background of fuzzy sets and logic. Design of fuzzy stems. Design of fuzzy ANNs. Applications A few examples of Neural Network applications, their advantages and problems will be discussed. DAY -2 MACHINE LEARNING The PAC Learning Framework Guarantees for finite hypothesis set – consistent case Guarantees for finite hypothesis set – inconsistent case Generalities Deterministic cv. Stochastic scenarios Bayes error noise Estimation and approximation errors Model selection Radmeacher Complexity and VC – Dimension Bias - Variance tradeoff Regularisation Over-fitting Validation Support Vector Machines Kriging (Gaussian Process regression) PCA and Kernel PCA Self Organisation Maps (SOM) Kernel induced vector space Mercer Kernels and Kernel - induced similarity metrics Reinforcement Learning DAY 3 - DEEP LEARNING This will be taught in relation to the topics covered on Day 1 and Day 2 Logistic and Softmax Regression Sparse Autoencoders Vectorization, PCA and Whitening Self-Taught Learning Deep Networks Linear Decoders Convolution and Pooling Sparse Coding Independent Component Analysis Canonical Correlation Analysis Demos and Applications
MLFWR1 Machine Learning Fundamentals with R 14 hours The aim of this course is to provide a basic proficiency in applying Machine Learning methods in practice. Through the use of the R programming platform and its various libraries, and based on a multitude of practical examples this course teaches how to use the most important building blocks of Machine Learning, how to make data modeling decisions, interpret the outputs of the algorithms and validate the results. Our goal is to give you the skills to understand and use the most fundamental tools from the Machine Learning toolbox confidently and avoid the common pitfalls of Data Sciences applications. Introduction to Applied Machine Learning Statistical learning vs. Machine learning Iteration and evaluation Bias-Variance trade-off Regression Linear regression Generalizations and Nonlinearity Exercises Classification Bayesian refresher Naive Bayes Logistic regression K-Nearest neighbors Exercises Cross-validation and Resampling Cross-validation approaches Bootstrap Exercises Unsupervised Learning K-means clustering Examples Challenges of unsupervised learning and beyond K-means
mlfunpython Machine Learning Fundamentals with Python 14 hours The aim of this course is to provide a basic proficiency in applying Machine Learning methods in practice. Through the use of the Python programming language and its various libraries, and based on a multitude of practical examples this course teaches how to use the most important building blocks of Machine Learning, how to make data modeling decisions, interpret the outputs of the algorithms and validate the results. Our goal is to give you the skills to understand and use the most fundamental tools from the Machine Learning toolbox confidently and avoid the common pitfalls of Data Sciences applications. Introduction to Applied Machine Learning Statistical learning vs. Machine learning Iteration and evaluation Bias-Variance trade-off Machine Learning with Python Choice of libraries Add-on tools Regression Linear regression Generalizations and Nonlinearity Exercises Classification Bayesian refresher Naive Bayes Logistic regression K-Nearest neighbors Exercises Cross-validation and Resampling Cross-validation approaches Bootstrap Exercises Unsupervised Learning K-means clustering Examples Challenges of unsupervised learning and beyond K-means
mlintro Introduction to Machine Learning 7 hours This training course is for people that would like to apply basic Machine Learning techniques in practical applications. Audience Data scientists and statisticians that have some familiarity with machine learning and know how to program R. The emphasis of this course is on the practical aspects of data/model preparation, execution, post hoc analysis and visualization. The purpose is to give a practical introduction to machine learning to participants interested in applying the methods at work Sector specific examples are used to make the training relevant to the audience. Naive Bayes Multinomial models Bayesian categorical data analysis Discriminant analysis Linear regression Logistic regression GLM EM Algorithm Mixed Models Additive Models Classification KNN Ridge regression Clustering
matlabml1 Introduction to Machine Learning with MATLAB 21 hours MATLAB Basics MATLAB More Advanced Features BP Neural Network RBF, GRNN and PNN Neural Networks SOM Neural Networks Support Vector Machine, SVM Extreme Learning Machine, ELM Decision Trees and Random Forests Genetic Algorithm, GA Particle Swarm Optimization, PSO Ant Colony Algorithm, ACA Simulated Annealing, SA Dimenationality Reduction and Feature Selection

Kommende Kurse

CourseSchulungsdatumKurspreis (Fernkurs / Schulungsraum)
Applied Machine Learning - BernMi, 2017-02-01 09:301890EUR / 2390EUR
Machine Learning Fundamentals with Python - ZürichDo, 2017-02-02 09:301490EUR / 1990EUR
Artificial Neural Networks, Machine Learning, Deep Thinking - BaselDi, 2017-02-14 09:305840EUR / 6490EUR

Other regions

Machine Learning Schulung, Machine Learning boot camp, Machine Learning Abendkurse, Machine Learning Wochenendkurse , Machine Learning Seminar, Machine Learning Seminare,Machine Learning Kurs, Machine Learning Lehrer , Machine Learning Training, Machine Learning Privatkurs

Course Discounts Newsletter

We respect the privacy of your email address. We will not pass on or sell your address to others.
You can always change your preferences or unsubscribe completely.

EINIGE UNSERER KUNDEN