Fortgeschrittenes maschinelles Lernen mit Python Schulung
In dieser von einem Trainer geleiteten Live-Schulung lernen die Teilnehmer die wichtigsten und modernsten Techniken des maschinellen Lernens in Python kennen, während sie eine Reihe von Demo-Anwendungen mit Bild-, Musik-, Text- und Finanzdaten erstellen.
Am Ende dieses Kurses werden die Teilnehmer in der Lage sein:
- Algorithmen und Techniken des maschinellen Lernens für die Lösung komplexer Probleme zu implementieren.
- Deep Learning und Semi-Supervised Learning auf Anwendungen für Bild-, Musik-, Text- und Finanzdaten anzuwenden.
- Algorithmen Python auf ihr maximales Potenzial zu bringen.
- Verwendung von Bibliotheken und Paketen wie NumPy und Theano.
Format des Kurses
- Teilweise Vorlesung, teilweise Diskussion, Übungen und umfangreiche praktische Übungen
Schulungsübersicht
Einführung
Beschreiben der Struktur von unüberwachten Daten
- Unüberwacht Machine Learning
Erkennen, Clustern und Generieren von Bildern, Videosequenzen und Bewegungsaufzeichnungsdaten
- Tiefe Belief-Netzwerke (DBNs)
Rekonstruieren der ursprünglichen Eingabedaten aus einer verfälschten (verrauschten) Version
- Auswahl und Extraktion von Merkmalen
- Stacked Denoising Autokodierer
Analyse von visuellen Bildern
- Faltungsanalyse Neural Networks
Ein besseres Verständnis der Datenstruktur gewinnen
- Semi-überwachtes Lernen
Verstehen von Textdaten
- Extraktion von Textmerkmalen
Erstellung hochpräziser Vorhersagemodelle
- Verbesserung der Machine Learning-Ergebnisse
- Ensemble-Methoden
Zusammenfassung und Schlussfolgerung
Voraussetzungen
- Python Programmiererfahrung
- Verständnis der Grundprinzipien des maschinellen Lernens
Zielgruppe
- Entwickler
- Analysten
- Datenwissenschaftler
Offene Schulungskurse erfordern mindestens 5 Teilnehmer.
Fortgeschrittenes maschinelles Lernen mit Python Schulung - Booking
Fortgeschrittenes maschinelles Lernen mit Python Schulung - Enquiry
Fortgeschrittenes maschinelles Lernen mit Python - Beratungsanfrage
Beratungsanfrage
Erfahrungsberichte (1)
In-depth coverage of machine learning topics, particularly neural networks. Demystified a lot of the topic.
Sacha Nandlall
Kurs - Python for Advanced Machine Learning
Maschinelle Übersetzung
Kommende Kurse
Kombinierte Kurse
Advanced Stable Diffusion: Deep Learning für Text-zu-Bild-Generierung
21 StundenDiese von einem Dozenten geleitete Live-Schulung in Schweiz (online oder vor Ort) richtet sich an fortgeschrittene Datenwissenschaftler, Ingenieure für maschinelles Lernen, Deep-Learning-Forscher und Computer-Vision-Experten, die ihre Kenntnisse und Fähigkeiten im Bereich Deep Learning für die Text-zu-Bild-Erzeugung erweitern möchten.
Am Ende dieses Kurses werden die Teilnehmer in der Lage sein:
- Fortgeschrittene Deep-Learning-Architekturen und -Techniken für die Text-Bild-Erzeugung zu verstehen.
- Komplexe Modelle und Optimierungen für eine hochwertige Bildsynthese zu implementieren.
- Leistung und Skalierbarkeit für große Datensätze und komplexe Modelle zu optimieren.
- Abstimmung von Hyperparametern für bessere Modellleistung und Generalisierung.
- Integration von Stable Diffusion mit anderen Deep-Learning-Frameworks und -Tools
AlphaFold
7 StundenDiese von einem Ausbilder geleitete Live-Schulung in Schweiz (online oder vor Ort) richtet sich an Biologen, die verstehen möchten, wie AlphaFold funktioniert, und die AlphaFold-Modelle als Leitfaden für ihre experimentellen Studien verwenden möchten.
Am Ende dieser Schulung werden die Teilnehmer in der Lage sein:
- Die Grundprinzipien von AlphaFold verstehen.
- Lernen, wie AlphaFold funktioniert.
- lernen, wie sie AlphaFold-Vorhersagen und -Ergebnisse interpretieren können.
Deep Learning für die Sehsysteme mit Caffe
21 StundenCaffe ist ein umfassendes Lernframework, das Ausdruck, Geschwindigkeit und Modularität berücksichtigt.
In diesem Kurs wird die Anwendung von Caffe als Deep-Learning-Framework für die Bilderkennung am Beispiel von MNIST erläutert
Publikum
Dieser Kurs eignet sich für Deep Learning Forscher und Ingenieure, die Caffe als Framework nutzen Caffe .
Nach Abschluss dieses Kurses haben die Teilnehmer folgende Möglichkeiten:
- die Struktur und die Bereitstellungsmechanismen von Caffe verstehen
- Installation / Produktionsumgebung / Architektur Aufgaben und Konfiguration durchführen
- Codequalität beurteilen, Debugging und Überwachung durchführen
- Implementieren Sie fortschrittliche Produktionsmethoden wie Schulungsmodelle, Implementieren von Ebenen und Protokollierung
Tiefenlernen-Neuronale Netze mit Chainer
14 StundenDiese von einem Dozenten geleitete Live-Schulung in Schweiz (online oder vor Ort) richtet sich an Forscher und Entwickler, die mit Chainer neuronale Netze in Python aufbauen und trainieren wollen und dabei den Code leicht debuggen können.
Am Ende dieses Kurses werden die Teilnehmer in der Lage sein:
- die notwendige Entwicklungsumgebung einzurichten, um mit der Entwicklung neuronaler Netzmodelle zu beginnen.
- Neuronale Netzmodelle unter Verwendung eines verständlichen Quellcodes zu definieren und zu implementieren.
- Beispiele auszuführen und bestehende Algorithmen zu modifizieren, um Deep-Learning-Trainingsmodelle zu optimieren und dabei GPUs für hohe Leistung zu nutzen.
Verwenden von Computer Network ToolKit (CNTK)
28 StundenComputer Network ToolKit (CNTK) ist Microsoft's Open Source, Multi-machine, Multi-GPU, Highly efficent RNN training machine learning framework for speech, text, and images.
Zielgruppe
Dieser Kurs richtet sich an Ingenieure und Architekten, die CNTK in ihren Projekten einsetzen wollen.
Tiefenlernen für Sehen
21 StundenPublikum
Dieser Kurs ist für Deep Learning Forscher und Ingenieure geeignet, die verfügbare Tools (meist Open Source) zur Analyse von Computerbildern verwenden möchten
Dieser Kurs enthält Arbeitsbeispiele.
Edge AI mit TensorFlow Lite
14 StundenDiese von einem Trainer durchgeführte Live-Ausbildung in Schweiz (online oder vor Ort) richtet sich an fortgeschrittene Entwickler, Datenwissenschaftler und AI-Praktiker, die TensorFlow Lite für Edge AI-Anwendungen nutzen möchten.
Am Ende dieser Ausbildung werden die Teilnehmer in der Lage sein:
- Grundlagen von TensorFlow Lite und dessen Rolle im Edge AI zu verstehen.
- AI-Modelle mit TensorFlow Lite entwickeln und optimieren.
- TensorFlow Lite-Modelle auf verschiedenen Edge-Geräten bereitstellen.
- Werkzeuge und Techniken für Modellumwandlung und -optimierung einsetzen.
- Praktische Edge AI-Anwendungen mit TensorFlow Lite implementieren.
Tiefenlernen mit FPGA und OpenVINO beschleunigen
35 StundenDiese von einem Trainer geleitete Live-Schulung in Schweiz (online oder vor Ort) richtet sich an Datenwissenschaftler, die Echtzeitanwendungen für maschinelles Lernen beschleunigen und in großem Umfang einsetzen möchten.
Am Ende dieser Schulung werden die Teilnehmer in der Lage sein:
- Das Toolkit OpenVINO zu installieren.
- Eine Computer-Vision-Anwendung mit einem FPGA zu beschleunigen.
- Verschiedene CNN-Schichten auf dem FPGA auszuführen.
- die Anwendung über mehrere Knoten in einem Kubernetes-Cluster zu skalieren.
Verteiltes Tiefes Lernen mit Horovod
7 StundenDiese von einem Trainer geleitete Live-Schulung in Schweiz (online oder vor Ort) richtet sich an Entwickler oder Datenwissenschaftler, die Horovod verwenden möchten, um verteilte Deep-Learning-Trainings durchzuführen und sie so zu skalieren, dass sie über mehrere GPUs parallel laufen.
Am Ende dieser Schulung werden die Teilnehmer in der Lage sein,:
- die notwendige Entwicklungsumgebung einzurichten, um Deep-Learning-Trainings auszuführen.
- Horovod zu installieren und zu konfigurieren, um Modelle mit TensorFlow, Keras, PyTorch und Apache MXNet zu trainieren.
- Deep-Learning-Training mit Horovod zu skalieren, um es auf mehreren GPUs laufen zu lassen.
Tiefenlernen mit Keras
21 StundenDiese von einem Ausbilder geleitete Live-Schulung in Schweiz (online oder vor Ort) richtet sich an technische Personen, die Deep-Learning-Modelle auf Bilderkennungsanwendungen anwenden möchten.
Am Ende dieser Schulung werden die Teilnehmer in der Lage sein,:
- Installieren und konfigurieren Keras.
- Schnell Prototypen von Deep-Learning-Modellen zu erstellen.
- Ein Faltungsnetzwerk zu implementieren.
- Ein rekurrentes Netzwerk zu implementieren.
- Ein Deep-Learning-Modell sowohl auf einer CPU als auch auf GPU auszuführen.
Einführung in Stable Diffusion für die Text-zu-Bild-Generierung
21 StundenDiese von einem Dozenten geleitete Live-Schulung (online oder vor Ort) richtet sich an Datenwissenschaftler, Ingenieure für maschinelles Lernen und Forscher im Bereich Computer Vision, die Stable Diffusion nutzen möchten, um hochwertige Bilder für eine Vielzahl von Anwendungsfällen zu erzeugen.
Am Ende dieser Schulung werden die Teilnehmer in der Lage sein:
- Die Prinzipien von Stable Diffusion und seine Funktionsweise für die Bilderzeugung zu verstehen.
- Erstellen und Trainieren von Stable Diffusion-Modellen für Bilderzeugungsaufgaben.
- Anwendung von Stable Diffusion auf verschiedene Bilderzeugungsszenarien, wie Inpainting, Outpainting und Bild-zu-Bild-Übersetzung.
- Optimieren der Leistung und Stabilität von Stable Diffusion-Modellen.
TensorFlow Lite für Mikrocontroller
21 StundenDiese von einem Trainer geleitete Live-Schulung (online oder vor Ort) richtet sich an Ingenieure, die Machine-Learning-Modelle auf sehr kleinen eingebetteten Geräten schreiben, laden und ausführen möchten.
Am Ende dieser Schulung werden die Teilnehmer in der Lage sein:
- Installieren TensorFlow Lite.
- Laden Sie Modelle für maschinelles Lernen auf ein eingebettetes Gerät, um es in die Lage zu versetzen, Sprache zu erkennen, Bilder zu klassifizieren usw.
- Hardwaregeräte mit KI ausstatten, ohne auf eine Netzwerkverbindung angewiesen zu sein.
Tiefenlernen mit TensorFlow
21 StundenTensorFlow ist eine 2nd Generation API von Go Ogle Open - Source - Software - Bibliothek für Deep Learning . Das System wurde entwickelt, um die Forschung im Bereich maschinelles Lernen zu vereinfachen und den Übergang vom Forschungsprototyp zum Produktionssystem schnell und einfach zu gestalten.
Publikum
Dieser Kurs richtet sich an Ingenieure, die TensorFlow für ihre Deep Learning Projekte einsetzen TensorFlow
Nach Abschluss dieses Kurses werden die Teilnehmer:
- Struktur und Einsatzmechanismen von TensorFlow verstehen
- in der Lage sein, Installations- / Produktionsumgebungs- / Architekturaufgaben und -konfigurationen auszuführen
- in der Lage sein, die Codequalität zu bewerten, Fehler zu beheben und zu überwachen
- in der Lage sein, fortgeschrittene Produktionsmethoden wie Trainingsmodelle, das Erstellen von Graphen und das Protokollieren zu implementieren
TensorFlow für Bilderkennung
28 StundenIn diesem Kurs wird anhand konkreter Beispiele die Anwendung von Tensor Flow zur Bilderkennung erläutert
Publikum
Dieser Kurs richtet sich an Ingenieure, die TensorFlow zur Bilderkennung einsetzen TensorFlow
Nach Abschluss dieses Kurses haben die Teilnehmer folgende Möglichkeiten:
- Struktur und Einsatzmechanismen von TensorFlow verstehen
- Installation / Produktionsumgebung / Architektur Aufgaben und Konfiguration durchführen
- Codequalität beurteilen, Debugging und Überwachung durchführen
- Implementieren Sie fortschrittliche Produktionsmethoden wie Trainingsmodelle, Erstellen von Diagrammen und Protokollieren
Natürliche Sprachverarbeitung (NLP) mit TensorFlow
35 StundenTensorFlow™ ist eine Open-Source-Software-Bibliothek für numerische Berechnungen mit Datenfluss-Grafen.
SyntaxNet ist ein Neural-Network Natural Language Processing Framework für TensorFlow.
Word2Vec wird verwendet, um Vektor-Repräsentationen von Wörtern zu lernen, die "Wörter-Inbeddings" genannt werden. Word2vec ist ein besonders berechnet-effizientes Vorhersage-Modell für das Lernen von Wörterinbindungen aus Rohtext. Es kommt in zwei Geschmacksmodellen, dem Kontinuous Bag-of-Words Modell (CBOW) und dem Skip-Gram Modell (Kapitel 3.1 und 3.2 in Mikolov et al.)
SyntaxNet und Word2Vec ermöglichen Benutzern die Erzeugung von Learned Embedding-Modellen aus Natural Language-Eintrag.
Publikum
Dieser Kurs richtet sich an Entwickler und Ingenieure, die mit SyntaxNet und Word2Vec Modellen in ihren TensorFlow Grafen arbeiten wollen.
Nach Abschluss dieses Kurses werden die Delegierten:
- Verständnis TensorFlow’s Struktur und Ausführungsmechanismen
- in der Lage, Installation / Produktionsumgebung / Architektur Aufgaben und Konfiguration durchzuführen
- in der Lage, die Codequalität zu bewerten, Debugging durchzuführen, Überwachung
- in der Lage, fortgeschrittene Produktion wie Trainingsmodelle, Einbruchsbedingungen, Baugraphen und Logging zu implementieren