Smart Robotics in Manufacturing: AI for Perception, Planning, and Control Training Course
Smart Robotics is the integration of artificial intelligence into robotic systems for improved perception, decision-making, and autonomous control.
This instructor-led, live training (online or onsite) is aimed at advanced-level robotics engineers, systems integrators, and automation leads who wish to implement AI-driven perception, planning, and control in smart manufacturing environments.
By the end of this training, participants will be able to:
- Understand and apply AI techniques for robotic perception and sensor fusion.
- Develop motion planning algorithms for collaborative and industrial robots.
- Deploy learning-based control strategies for real-time decision making.
- Integrate intelligent robotic systems into smart factory workflows.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Schulungsübersicht
Introduction to Smart Robotics and AI Integration
- Overview of robotics in Industry 4.0
- AI’s role in perception, planning, and control
- Software and simulation environments
Perception Systems and Sensor Fusion
- Computer vision for robotics (2D/3D cameras, LiDAR)
- Sensor calibration and fusion techniques
- Object detection and environment mapping
Deep Learning for Perception
- Neural networks for visual recognition
- Using TensorFlow or PyTorch with robotic data
- Training perception models for object tracking
Motion Planning and Path Optimization
- Sampling-based and optimization-based planning
- Working with MoveIt for motion planning
- Collision avoidance and dynamic re-planning
Learning-Based Control Strategies
- Reinforcement learning for robotic control
- Integrating AI into low-level control loops
- Simulation with OpenAI Gym and Gazebo
Collaborative Robots (Cobots) in Smart Manufacturing
- Safety standards and human-robot collaboration
- Programming and integrating cobots with AI
- Adaptive behaviors and real-time responsiveness
System Integration and Deployment
- Interfacing with industrial controllers (PLC, SCADA)
- Edge AI deployment for real-time robotics
- Data logging, monitoring, and troubleshooting
Summary and Next Steps
Voraussetzungen
- An understanding of robotic systems and kinematics
- Experience with Python programming
- Familiarity with AI or machine learning concepts
Audience
- Robotics engineers
- Systems integrators
- Automation leads
Offene Schulungskurse erfordern mindestens 5 Teilnehmer.
Smart Robotics in Manufacturing: AI for Perception, Planning, and Control Training Course - Booking
Smart Robotics in Manufacturing: AI for Perception, Planning, and Control Training Course - Enquiry
Smart Robotics in Manufacturing: AI for Perception, Planning, and Control - Beratungsanfrage
Beratungsanfrage
Kommende Kurse
Kombinierte Kurse
AI-Powered Predictive Maintenance for Industrial Systems
14 StundenAI-powered predictive maintenance applies machine learning and data analytics to forecast equipment failures and optimize maintenance schedules. It transforms reactive maintenance models into proactive strategies, enabling better uptime, cost reduction, and asset longevity.
This instructor-led, live training (online or onsite) is aimed at intermediate-level professionals who wish to implement AI-driven predictive maintenance solutions in industrial environments.
By the end of this training, participants will be able to:
- Understand how predictive maintenance differs from reactive and preventive maintenance strategies.
- Collect and structure machine data for AI-powered analysis.
- Apply machine learning models to detect anomalies and predict failures.
- Implement end-to-end workflows from sensor data to actionable insights.
Format of the Course
- Interactive lecture and discussion.
- Hands-on exercises and case studies.
- Live demonstration and practical data workflows.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
AI for Process Optimization in Manufacturing Operations
21 StundenAI for Process Optimization is the application of machine learning and data analytics to enhance efficiency, quality, and throughput in manufacturing operations.
This instructor-led, live training (online or onsite) is aimed at intermediate-level manufacturing professionals who wish to apply AI techniques to streamline operations, reduce downtime, and support continuous improvement initiatives.
By the end of this training, participants will be able to:
- Understand AI concepts relevant to manufacturing optimization.
- Collect and prepare production data for analysis.
- Apply machine learning models to identify bottlenecks and predict failures.
- Visualize and interpret results to support data-driven decisions.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
AI for Quality Control and Assurance in Production Lines
21 StundenAI for Quality Control is the use of computer vision and machine learning techniques to identify defects, anomalies, and deviations in production processes.
This instructor-led, live training (online or onsite) is aimed at beginner-level to intermediate-level quality professionals who wish to apply AI tools to automate inspections and improve product quality in manufacturing environments.
By the end of this training, participants will be able to:
- Understand how AI is applied in industrial quality control.
- Collect and label image or sensor data from production lines.
- Use machine learning and computer vision to detect defects.
- Develop simple AI models for anomaly detection and yield forecasting.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
AI for Supply Chain and Manufacturing Logistics
21 StundenAI in Supply Chain and Manufacturing Logistics is the application of predictive analytics, machine learning, and automation to optimize inventory, routing, and demand forecasting.
This instructor-led, live training (online or onsite) is aimed at intermediate-level supply chain professionals who wish to apply AI-driven tools to enhance logistics performance, forecast demand accurately, and automate warehouse and transport operations.
By the end of this training, participants will be able to:
- Understand how AI is applied across logistics and supply chain activities.
- Use machine learning models for demand forecasting and inventory control.
- Analyze routes and optimize transport using AI-based techniques.
- Automate decision-making in warehouses and fulfillment processes.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Introduction to AI in Smart Factories and Industrial Automation
14 StundenAI in Smart Factories is the application of artificial intelligence to automate, monitor, and optimize industrial operations in real time.
This instructor-led, live training (online or onsite) is aimed at beginner-level decision-makers and technical leads who wish to gain a strategic and practical introduction to how AI can be leveraged in smart factory environments.
By the end of this training, participants will be able to:
- Understand the core principles of AI and machine learning.
- Identify key AI use cases in manufacturing and automation.
- Explore how AI supports predictive maintenance, quality control, and process optimization.
- Evaluate the steps involved in launching AI-driven initiatives.
Format of the Course
- Interactive lecture and discussion.
- Real-world case studies and group exercises.
- Strategic frameworks and implementation guidance.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Hands-on Workshop: Implementing AI Use Cases with Industrial Data
21 StundenAI Use Case Implementation is a hands-on, project-driven approach to applying machine learning, computer vision, and data analytics to solve real-world industrial challenges using actual or simulated datasets.
This instructor-led, live training (online or onsite) is aimed at intermediate-level cross-functional teams who wish to collaboratively implement AI use cases aligned with their operational goals and gain experience working with industrial data pipelines.
By the end of this training, participants will be able to:
- Select and scope practical AI use cases from operations, quality, or maintenance.
- Work collaboratively across roles to develop machine learning solutions.
- Handle, clean, and analyze diverse industrial datasets.
- Present a working prototype of an AI-enabled solution based on a selected use case.
Format of the Course
- Interactive lecture and discussion.
- Group-based exercises and project work.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Developing Intelligent Bots with Azure
14 StundenDer Azure Bot-Dienst kombiniert die Funktionen von Microsoft Bot Framework und Azure , um die schnelle Entwicklung intelligenter Bots zu ermöglichen.
In diesem von Lehrern geleiteten Live-Training lernen die Teilnehmer, wie sie mit Microsoft Azure auf einfache Weise einen intelligenten Bot erstellen können
Am Ende dieser Schulung können die Teilnehmer:
- Die Grundlagen intelligenter Bots erlernen
- Erfahren, wie man mit Cloud-Anwendungen intelligente Bots erstellt
- Begreifen, wie man das Microsoft Bot Framework, den Bot Builder SDK und den Azure Bot-Dienst nutzt
- Die Erstellung von Bots mithilfe von Bot-Mustern verstehen
- Ihren ersten intelligenten Bot mit Microsoft Azure entwickeln
Publikum
- Entwickler
- Hobbyisten
- Ingenieure
- IT-Professionals
Format des Kurses
- Theoretische Einführung, Diskussionen, Übungen und praktisches Training
Developing a Bot
14 StundenEin Bot oder Chatbot ist eine Art Computerassistent, der dazu dient, Benutzerinteraktionen auf verschiedenen Messaging-Plattformen zu automatisieren und Dinge schneller zu erledigen, ohne dass die Benutzer mit einem anderen Menschen sprechen müssen.
In dieser von einem Trainer geleiteten Live-Schulung lernen die Teilnehmer, wie sie mit der Entwicklung eines Bots beginnen können, indem sie Schritt für Schritt die Erstellung von Beispiel-Chatbots mit Bot-Entwicklungstools und Frameworks durchlaufen.
Am Ende dieser Schulung werden die Teilnehmer in der Lage sein:
- die verschiedenen Einsatzmöglichkeiten und Anwendungen von Bots zu verstehen
- den gesamten Prozess der Entwicklung von Bots zu verstehen
- die verschiedenen Tools und Plattformen, die bei der Entwicklung von Bots verwendet werden, kennenlernen
- Einen Beispiel-Chatbot für Facebook Messenger erstellen
- Einen Beispiel-Chatbot mit Microsoft Bot Framework erstellen
Zielgruppe
- EntwicklerInnen, die an der Erstellung eines eigenen Bots interessiert sind
Format des Kurses
- Teilweise Vorlesung, teilweise Diskussion, Übungen und viel praktische Erfahrung
Building Digital Twins with AI and Real-Time Data
21 StundenDigital Twins are virtual replicas of physical systems enhanced by real-time data and AI-driven intelligence.
This instructor-led, live training (online or onsite) is aimed at intermediate-level professionals who wish to build, deploy, and optimize digital twin models using real-time data and AI-based insights.
By the end of this training, participants will be able to:
- Understand the architecture and components of digital twins.
- Use simulation tools to model complex systems and environments.
- Integrate real-time data streams into virtual models.
- Apply AI techniques for predictive behavior and anomaly detection.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Edge AI for Manufacturing: Real-Time Intelligence at the Device Level
21 StundenEdge AI is the deployment of artificial intelligence models directly on devices and machines at the edge of the network, enabling real-time decision-making with minimal latency.
This instructor-led, live training (online or onsite) is aimed at advanced-level embedded and IoT professionals who wish to deploy AI-powered logic and control systems in manufacturing environments where speed, reliability, and offline operation are critical.
By the end of this training, participants will be able to:
- Understand the architecture and benefits of edge AI systems.
- Build and optimize AI models for deployment on embedded devices.
- Use tools like TensorFlow Lite and OpenVINO for low-latency inference.
- Integrate edge intelligence with sensors, actuators, and industrial protocols.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Industrial Computer Vision with AI: Defect Detection and Visual Inspection
14 StundenIndustrial computer vision with AI is transforming how manufacturers and QA teams detect surface defects, verify part conformity, and automate visual inspection processes.
This instructor-led, live training (online or onsite) is aimed at intermediate-level to advanced-level QA teams, automation engineers, and developers who wish to design and implement computer vision systems for defect detection and inspection using AI techniques.
By the end of this training, participants will be able to:
- Understand the architecture and components of industrial vision systems.
- Build AI models for visual defect detection using deep learning.
- Integrate real-time inspection pipelines with industrial cameras and devices.
- Deploy and optimize AI-powered inspection systems for production environments.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Artificial Intelligence (AI) for Mechatronics
21 StundenDiese von einem Ausbilder geleitete Live-Schulung in Schweiz (online oder vor Ort) richtet sich an Ingenieure, die etwas über die Anwendbarkeit von künstlicher Intelligenz auf mechatronische Systeme erfahren möchten.
Am Ende dieser Schulung werden die Teilnehmer in der Lage sein:
- Einen Überblick über künstliche Intelligenz, maschinelles Lernen und Computerintelligenz zu erhalten.
- die Konzepte von neuronalen Netzen und verschiedenen Lernmethoden zu verstehen.
- Ansätze der künstlichen Intelligenz effektiv für reale Probleme auszuwählen.
- KI-Anwendungen in der mechatronischen Technik zu implementieren.
Physical AI for Robotics and Automation
21 StundenDiese von einem Ausbilder geleitete Live-Schulung in Schweiz (online oder vor Ort) richtet sich an Teilnehmer auf mittlerem Niveau, die ihre Fähigkeiten im Entwurf, in der Programmierung und im Einsatz von intelligenten Robotersystemen für die Automatisierung und darüber hinaus verbessern möchten.
Am Ende dieses Kurses werden die Teilnehmer in der Lage sein:
- die Prinzipien von Physical AI und seine Anwendungen in der Robotik und Automatisierung zu verstehen.
- Intelligente Robotersysteme für dynamische Umgebungen entwerfen und programmieren.
- KI-Modelle für autonome Entscheidungsfindung in Robotern zu implementieren.
- Nutzung von Simulationswerkzeugen für die Prüfung und Optimierung von Robotern.
- Bewältigung von Herausforderungen wie Sensor-Fusion, Echtzeitverarbeitung und Energieeffizienz.
Smart Robots for Developers
84 StundenEin intelligenter Roboter ist ein Artificial Intelligence (AI) System, das aus seiner Umgebung und seinen Erfahrungen lernen und seine Fähigkeiten auf der Grundlage dieses Wissens ausbauen kann. Ein intelligenter Roboter Smart Robots kann mit Menschen zusammenarbeiten, ihnen zur Seite stehen und von ihrem Verhalten lernen. Darüber hinaus können sie nicht nur manuelle Arbeiten, sondern auch kognitive Aufgaben übernehmen. Neben physischen Robotern können Smart Robots auch rein softwarebasiert sein und als Softwareanwendung ohne bewegliche Teile oder physische Interaktion mit der Welt in einem Computer installiert sein.
In dieser von einem Kursleiter geleiteten Live-Schulung lernen die Teilnehmer die verschiedenen Technologien, Frameworks und Techniken für die Programmierung verschiedener Arten von mechanischen Smart Robots Robotern kennen und wenden dieses Wissen anschließend an, um ihre eigenen Smart Robot-Projekte zu realisieren.
Der Kurs ist in vier Abschnitte unterteilt, die jeweils aus drei Tagen mit Vorträgen, Diskussionen und praktischer Roboterentwicklung in einer Live-Laborumgebung bestehen. Jeder Abschnitt wird mit einem praktischen Projekt abgeschlossen, in dem die Teilnehmer ihr erworbenes Wissen anwenden und demonstrieren können.
Die Zielhardware für diesen Kurs wird mit Hilfe einer Simulationssoftware in 3D simuliert. Für die Programmierung der Roboter werden die Open-Source-Frameworks ROS (Robot Operating System), C++ und Python verwendet.
Am Ende dieses Kurses werden die Teilnehmer in der Lage sein:
- die Schlüsselkonzepte der Robotertechnologien zu verstehen
- die Interaktion zwischen Software und Hardware in einem Robotersystem zu verstehen und zu steuern
- die Softwarekomponenten zu verstehen und zu implementieren, die Smart Robots zugrunde liegen
- einen simulierten mechanischen Smart Robot zu bauen und zu betreiben, der sehen, erkennen, verarbeiten, greifen, navigieren und mit Menschen durch Sprache interagieren kann
- Erweiterung der Fähigkeit eines intelligenten Roboters zur Ausführung komplexer Aufgaben durch Deep Learning
- Testen Sie einen Smart Robot in realistischen Szenarien und führen Sie eine Fehlerbehebung durch.
Zielgruppe
- Entwickler
- Ingenieure
Format des Kurses
- Teilweise Vorlesung, teilweise Diskussion, Übungen und umfangreiche praktische Übungen
Hinweis
- Wenn Sie einen Teil dieses Kurses anpassen möchten (Programmiersprache, Robotermodell usw.), nehmen Sie bitte Kontakt mit uns auf.