Künstliche Intelligenz Schulungen | Artificial Intelligence (AI) Schulungen

Künstliche Intelligenz Schulungen

Live-Schulungen zu künstlichen Intelligenz (KI) vor Ort demonstrieren anhand praktischer Übungen, wie KI-Lösungen zur Lösung realer Probleme implementiert werden. KI-Schulungen sind als "Live-Training vor Ort" oder "Remote-Live-Training" verfügbar. Live-Schulungen vor Ort können vor Ort beim Kunden vor Ort durchgeführt werden Schweiz oder in NobleProg-Schulungszentren in Schweiz . Das Remote-Live-Training wird über einen interaktiven Remote-Desktop durchgeführt. NobleProg - Ihr lokaler Trainingsanbieter.

Machine Translated

Erfahrungsberichte

★★★★★
★★★★★

AI Kurspläne

Name des Kurses
Dauer
Überblick
Name des Kurses
Dauer
Überblick
14 Stunden
Überblick
Dieser Kurs behandelt KI (mit Schwerpunkt auf Machine Learning und Deep Learning ) in der Automotive . Es hilft zu bestimmen, welche Technologie (potenziell) in mehreren Situationen in einem Auto eingesetzt werden kann: von der einfachen Automatisierung über die Bilderkennung bis hin zur autonomen Entscheidungsfindung.
14 Stunden
Überblick
OpenNN ist eine in C ++ geschriebene Open-Source-Klassenbibliothek, die neuronale Netzwerke für maschinelles Lernen implementiert.

In diesem Kurs gehen wir auf die Prinzipien neuronaler Netzwerke ein und verwenden OpenNN, um eine Beispielanwendung zu implementieren.

Publikum
Softwareentwickler und Programmierer, die Deep-Learning-Anwendungen erstellen möchten.

Format des Kurses
Vortrag und Diskussion, begleitet von praktischen Übungen.
14 Stunden
Überblick
Diese auf Klassenräumen basierende Schulungssitzung enthält Präsentationen und computergestützte Beispiele sowie Fallstudien, die mit relevanten neuronalen und tiefen Netzwerkbibliotheken durchgeführt werden sollen
21 Stunden
Überblick
Der Kurs richtet sich an diejenigen, die ein alternatives Programm zum kommerziellen MATLAB-Paket kennenlernen möchten Das dreitägige Training bietet umfassende Informationen über die Bewegung in der Umwelt und die Durchführung des OCTAVE-Pakets für Datenanalyse und technische Berechnungen Die Trainingsempfänger sind Anfänger, aber auch diejenigen, die das Programm kennen und ihr Wissen systematisieren und ihre Fähigkeiten verbessern möchten Kenntnisse in anderen Programmiersprachen sind nicht erforderlich, erleichtern aber den Lernenden den Erwerb von Wissen Der Kurs zeigt Ihnen, wie Sie das Programm in vielen praktischen Beispielen verwenden .
28 Stunden
Überblick
OpenCV (Open Source Computer Vision Library: http://opencv.org) ist eine Open Source-BSD-lizenzierte Bibliothek, die mehrere Hundert Computer Vision-Algorithmen enthält.

Publikum

Dieser Kurs richtet sich an Ingenieure und Architekten, die OpenCV für Computer Vision-Projekte einsetzen OpenCV
14 Stunden
Überblick
OpenCV is a library of programming functions for deciphering images with computer algorithms. OpenCV 4 is the latest OpenCV release and it provides optimized modularity, updated algorithms, and more. With OpenCV 4 and Python, users will be able to view, load, and classify images and videos for advanced image recognition.

This instructor-led, live training (online or onsite) is aimed at software engineers who wish to program in Python with OpenCV 4 for deep learning.

By the end of this training, participants will be able to:

- View, load, and classify images and videos using OpenCV 4.
- Implement deep learning in OpenCV 4 with TensorFlow and Keras.
- Run deep learning models and generate impactful reports from images and videos.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
14 Stunden
Überblick
OpenFace ist Python und Torch-basierte Echtzeit-Gesichtserkennungssoftware, die auf der FaceNet-Forschung von Google basiert In diesem instruierten Live-Training lernen die Teilnehmer, wie sie mithilfe der OpenFace-Komponenten eine Musteranwendung für die Gesichtserkennung erstellen und bereitstellen können Am Ende dieses Trainings werden die Teilnehmer in der Lage sein: Arbeiten Sie mit OpenFace-Komponenten, einschließlich dlib, OpenVC, Torch und nn4, um Gesichtserkennung, Ausrichtung und Transformation zu implementieren Wenden Sie OpenFace auf Realworld-Anwendungen wie Überwachung, Identitätsüberprüfung, Virtual Reality, Spiele und Identifizierung von Stammkunden usw an Publikum Entwickler Datenwissenschaftler Format des Kurses Teilvorlesung, Teildiskussion, Übungen und schwere Handsonsübungen .
14 Stunden
Überblick
Die Apache OpenNLP-Bibliothek ist ein auf maschinellem Lernen basierendes Toolkit zur Verarbeitung von Text in natürlicher Sprache Es unterstützt die gebräuchlichsten NLP-Aufgaben, wie z B Spracherkennung, Tokenisierung, Satzsegmentierung, Teil-Spech-Tagging, Namensentitätsextraktion, Chunking, Parsing und Koreferenzierung In diesem instruierten Live-Training lernen die Teilnehmer, wie sie mit OpenNLP Modelle für die Verarbeitung textbasierter Daten erstellen können Als Grundlage für die Laborübungen dienen sowohl Trainingsdaten als auch kundenspezifische Datensätze Am Ende dieses Trainings werden die Teilnehmer in der Lage sein: Installieren und konfigurieren Sie OpenNLP Laden Sie bestehende Modelle herunter und erstellen Sie eigene Modelle Trainieren Sie die Modelle auf verschiedenen Sample-Datensätzen Integrieren Sie OpenNLP in vorhandene Java-Anwendungen Publikum Entwickler Datenwissenschaftler Format des Kurses Teilvorlesung, Teildiskussion, Übungen und schwere Handsonsübungen .
7 Stunden
Überblick
In diesem von Lehrern geführten Live-Training lernen die Teilnehmer, wie OpenNMT eingerichtet und verwendet OpenNMT , um die Übersetzung verschiedener Beispieldatensätze durchzuführen. Der Kurs beginnt mit einem Überblick über neuronale Netze, wie sie für die maschinelle Übersetzung gelten. Die Teilnehmer führen während des gesamten Kurses Live-Übungen durch, um ihr Verständnis der erlernten Konzepte zu demonstrieren und Feedback vom Kursleiter zu erhalten.

Am Ende dieser Schulung verfügen die Teilnehmer über das Wissen und die Praxis, um eine Live- OpenNMT Lösung zu implementieren.

Quell- und Zielsprachenbeispiele werden nach den Anforderungen des Publikums vorbestellt.

Format des Kurses

- Teilvorlesung, Teildiskussion, viel Praxis
21 Stunden
Überblick
In diesem Kurs wird ein praktischer Ansatz zum Unterrichten von OptaPlanner . Es stellt den Teilnehmern die Werkzeuge zur Verfügung, die zur Ausführung der Grundfunktionen dieses Werkzeugs erforderlich sind.
21 Stunden
Überblick
Es wird geschätzt, dass unstrukturierte Daten mehr als 90 Prozent aller Daten ausmachen, ein Großteil davon in Textform. Blogbeiträge, Tweets, Social Media und andere digitale Publikationen tragen immer wieder zu diesem wachsenden Datenbestand bei.

Dieser von Ausbildern geleitete Live-Kurs konzentriert sich auf die Gewinnung von Einsichten und Bedeutungen aus diesen Daten. Mit Hilfe der Bibliotheken R Language and Natural Language Processing (NLP) kombinieren wir Konzepte und Techniken aus der Informatik, der künstlichen Intelligenz und der Computerlinguistik, um die Bedeutung hinter den Textdaten algorithmisch zu verstehen. Datenbeispiele sind in verschiedenen Sprachen pro Kundenwunsch erhältlich.

Am Ende dieses Trainings werden die Teilnehmer in der Lage sein, Datensätze (große und kleine) aus unterschiedlichen Quellen zu erstellen und dann die richtigen Algorithmen anzuwenden, um ihre Bedeutung

zu analysieren und zu berichten.

Format der

- Teil-Vortrag, Teilbesprechung, schwere Hands-on-Praxis, gelegentliche Tests zur Messung des Verständnisses
21 Stunden
Überblick
PaddlePaddle (PArallel Distributed Deep LEarning) ist eine von Baidu entwickelte skalierbare Deep-Learning-Plattform In diesem instruierten Live-Training lernen die Teilnehmer, PaddlePaddle zu verwenden, um tiefes Lernen in ihren Produkt- und Serviceanwendungen zu ermöglichen Am Ende dieses Trainings werden die Teilnehmer in der Lage sein: Richten Sie PaddlePaddle ein und konfigurieren Sie es Richten Sie ein Convolutional Neural Network (CNN) für die Bilderkennung und Objekterkennung ein Richten Sie ein Recurrent Neural Network (RNN) für die Stimmungsanalyse ein Richten Sie Deep Learning auf Empfehlungssystemen ein, damit Benutzer Antworten finden können Klickraten (Click-through-Rate - CTR) vorhersagen, großformatige Bildsätze klassifizieren, optische Zeichenerkennung (OCR) durchführen, Suchanfragen einordnen, Computerviren erkennen und ein Empfehlungssystem implementieren Publikum Entwickler Datenwissenschaftler Format des Kurses Teilvorlesung, Teildiskussion, Übungen und schwere Handsonsübungen .
14 Stunden
Überblick
Die Mustererkennung ist eine Technik, mit der bestimmte Muster in einem Bild gesucht werden. Es kann verwendet werden, um das Vorhandensein bestimmter Merkmale in einem erfassten Bild zu bestimmen, z. B. das erwartete Etikett auf einem fehlerhaften Produkt in einer Fertigungslinie oder die angegebenen Abmessungen eines Bauteils. Es unterscheidet sich von der " Pattern Recognition " (die allgemeine Muster erkennt, die auf größeren Sammlungen verwandter Muster basieren) darin, dass es genau festlegt, wonach wir suchen, und uns dann mitteilt, ob das erwartete Muster vorhanden ist oder nicht.

Format des Kurses

- Dieser Kurs führt in die Ansätze, Technologien und Algorithmen ein, die im Bereich des Pattern Matching für Machine Vision .
21 Stunden
Überblick
PredictionIO ist ein Open-Source-Server für Machine Learning der auf dem neuesten Open-Source-Stack aufbaut.

Publikum

Dieser Kurs richtet sich an Entwickler und Datenwissenschaftler, die Predictive Engines für jede maschinelle Lernaufgabe erstellen möchten.
14 Stunden
Überblick
R ist eine freie Open-Source-Programmiersprache für statistische Berechnungen, Datenanalysen und Grafiken. R wird von einer wachsenden Anzahl von Managern und Datenanalysten in Unternehmen und Hochschulen verwendet. R bietet eine Vielzahl von Paketen für das Data Mining.
14 Stunden
Überblick
Pandas is a Python library for data manipulation and analysis. Using Pandas, users can perform predictive analysis through machine learning.

This instructor-led, live training (online or onsite) is aimed at data scientists who wish to use Pandas to preform predictive analysis with machine learning.

By the end of this training, participants will be able to:

- Perform data wrangling in Python.
- Conduct ETL operations for machine learning.
- Create data visualizations with Pandas

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
21 Stunden
Überblick
In diesem instruierten Live-Training lernen die Teilnehmer die relevantesten und fortschrittlichsten maschinellen Lerntechniken in Python kennen, während sie eine Reihe von Demo-Anwendungen mit Bild-, Musik-, Text- und Finanzdaten erstellen Am Ende dieses Trainings werden die Teilnehmer in der Lage sein: Implementieren Sie maschinelle Lernalgorithmen und Techniken zur Lösung komplexer Probleme Wenden Sie intensives Lernen und halbüberwachtes Lernen auf Anwendungen mit Bild-, Musik-, Text- und Finanzdaten an Push Python-Algorithmen auf ihr maximales Potenzial Verwenden Sie Bibliotheken und Pakete wie NumPy und Theano Publikum Entwickler Analysten Datenwissenschaftler Format des Kurses Teilvorlesung, Teildiskussion, Übungen und schwere Handsonsübungen .
14 Stunden
Überblick
Computer Vision ist ein Bereich, in dem nützliche Informationen aus digitalen Medien automatisch extrahiert, analysiert und verstanden werden. Python ist eine High-Level-Programmiersprache, die für ihre klare Syntax und Codelesbarkeit bekannt ist.

In diesem von Lehrern geführten Live-Training lernen die Teilnehmer die Grundlagen von Computer Vision kennen, während sie mit Python Reihe einfacher Computer Vision-Anwendungen erstellen.

Am Ende dieser Schulung können die Teilnehmer:

- Grundlegendes zu Computer Vision
- Verwenden Sie Python , um Computer Vision-Aufgaben zu implementieren
- Erstellen Sie eigene Systeme zur Gesichts-, Objekt- und Bewegungserkennung

Publikum

- Python Programmierer, die sich für Computer Vision interessieren

Format des Kurses

- Teilvorlesung, Teildiskussion, Übungen und viel praktisches Üben
21 Stunden
Überblick
Diese Schulungssitzung im Klassenzimmer wird NLP-Techniken in Verbindung mit der Anwendung von AI und Robotics im Geschäftsleben untersuchen Die Delegierten werden computerbasierte Beispiele und Fallstudien-Lösungsübungen mit Python durchführen .
21 Stunden
Überblick
Dieser Kurs richtet sich an Personen, die daran interessiert sind, dem geschriebenen englischen Text Bedeutung zu entziehen, obwohl das Wissen auch auf andere menschliche Sprachen übertragen werden kann.

Der Kurs befasst sich mit der Verwendung von Texten, die von Menschen geschrieben wurden, z. B. Blog-Posts, Tweets usw.

Beispielsweise kann ein Analyst einen Algorithmus einrichten, der auf der Grundlage einer umfangreichen Datenquelle automatisch zu einer Schlussfolgerung gelangt.
35 Stunden
Überblick
Am Ende der Schulung wird erwartet, dass die Teilnehmer mit den wesentlichen Python-Konzepten ausreichend ausgestattet sind und in der Lage sein sollten, NLTK ausreichend zu verwenden, um die meisten NLP- und ML-basierten Operationen zu implementieren. Die Schulung zielt darauf ab, nicht nur ein Ausführungswissen zu vermitteln, sondern auch das logische und operative Wissen über die darin enthaltene Technologie.
14 Stunden
Überblick
Diese Präsenzschulung wird maschinelle Lerntechniken mit computerbasierten Beispielen und Fallbeispiel-Lösungsübungen unter Verwendung einer relevanten Programmsprache untersuchen .
28 Stunden
Überblick
Maschinelles Lernen ist ein Zweig der künstlichen Intelligenz, in dem Computer lernen können, ohne explizit programmiert zu werden. R ist eine beliebte Programmiersprache in der Finanzbranche. Es wird in Finanzanwendungen eingesetzt, die von Kernhandelsprogrammen bis zu Risikomanagementsystemen reichen.

In diesem von Lehrern geführten Live-Training lernen die Teilnehmer, wie sie Techniken und Werkzeuge des maschinellen Lernens anwenden, um reale Probleme in der Finanzbranche zu lösen. Als Programmiersprache wird R verwendet.

Die Teilnehmer lernen zunächst die wichtigsten Prinzipien und setzen dann ihr Wissen in die Praxis um, indem sie ihre eigenen Modelle für maschinelles Lernen erstellen und sie für eine Reihe von Teamprojekten verwenden.

Am Ende dieser Schulung können die Teilnehmer:

- Verstehen Sie die grundlegenden Konzepte des maschinellen Lernens
- Lernen Sie die Anwendungen und Einsatzmöglichkeiten des maschinellen Lernens im Finanzbereich kennen
- Entwickeln Sie ihre eigene algorithmische Handelsstrategie mithilfe von maschinellem Lernen mit R

Publikum

- Entwickler
- Datenwissenschaftler

Format des Kurses

- Teilvorlesung, Teildiskussion, Übungen und viel praktisches Üben
21 Stunden
Überblick
MLflow is an open source platform for streamlining and managing the machine learning lifecycle. It supports any ML (machine learning) library, algorithm, deployment tool or language. Simply add MLflow to your existing ML code to share the code across any ML library being used within your organization.

This instructor-led, live training (online or onsite) is aimed at data scientists who wish to go beyond building ML models and optimize the ML model creation, tracking, and deployment process.

By the end of this training, participants will be able to:

- Install and configure MLflow and related ML libraries and frameworks.
- Appreciate the importance of trackability, reproducability and deployability of an ML model
- Deploy ML models to different public clouds, platforms, or on-premise servers.
- Scale the ML deployment process to accommodate multiple users collaborating on a project.
- Set up a central registry to experiment with, reproduce, and deploy ML models.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
14 Stunden
Überblick
Ziel dieses Kurses ist es, grundlegende Kenntnisse in der Anwendung von Methoden des Machine Learning in der Praxis zu vermitteln. In diesem Kurs wird anhand der Programmiersprache Scala und ihrer verschiedenen Bibliotheken anhand einer Vielzahl von praktischen Beispielen gezeigt, wie die wichtigsten Bausteine des Machine Learning , wie Datenmodellierungsentscheidungen getroffen, die Ergebnisse der Algorithmen interpretiert werden und validieren Sie die Ergebnisse.

Unser Ziel ist es, Sie in die Lage zu versetzen, die grundlegendsten Tools aus der Toolbox für Machine Learning sicher zu verstehen und zu verwenden und die üblichen Fallstricke der Data Science Anwendungen zu vermeiden.
14 Stunden
Überblick
Ziel dieses Kurses ist es, grundlegende Kenntnisse in der Anwendung von Methoden des Machine Learning in der Praxis zu vermitteln. In diesem Kurs wird anhand der Programmiersprache Python und ihrer verschiedenen Bibliotheken anhand einer Vielzahl praktischer Beispiele gezeigt, wie die wichtigsten Bausteine des Machine Learning , wie Datenmodellierungsentscheidungen getroffen, die Ergebnisse der Algorithmen interpretiert werden und validieren Sie die Ergebnisse.

Unser Ziel ist es, Sie in die Lage zu versetzen, die grundlegendsten Tools aus der Toolbox für Machine Learning sicher zu verstehen und zu verwenden und die üblichen Fallstricke der Data Science Anwendungen zu vermeiden.
14 Stunden
Überblick
Ziel dieses Kurses ist es, grundlegende Kenntnisse in der Anwendung von Methoden des Machine Learning in der Praxis zu vermitteln. Anhand der R - Programmierplattform und ihrer verschiedenen Bibliotheken sowie anhand einer Vielzahl praktischer Beispiele wird in diesem Kurs die Verwendung der wichtigsten Bausteine des Machine Learning , das Treffen von Datenmodellierungsentscheidungen sowie die Interpretation der Ergebnisse der Algorithmen und erläutert validieren Sie die Ergebnisse.

Unser Ziel ist es, Sie in die Lage zu versetzen, die grundlegendsten Tools aus der Toolbox für Machine Learning sicher zu verstehen und zu verwenden und die üblichen Fallstricke der Data Science Anwendungen zu vermeiden.
7 Stunden
Überblick
Dieser Kurs richtet sich an Personen, die grundlegende Techniken des Machine Learning in praktischen Anwendungen anwenden möchten.

Publikum

Datenwissenschaftler und Statistiker, die mit maschinellem Lernen vertraut sind und wissen, wie man R programmiert. Der Schwerpunkt dieses Kurses liegt auf den praktischen Aspekten der Daten- / Modellvorbereitung, Ausführung, Post-Hoc-Analyse und Visualisierung. Ziel ist es, Teilnehmern, die an der Anwendung der Methoden bei der Arbeit interessiert sind, eine praktische Einführung in das maschinelle Lernen zu geben

Branchenspezifische Beispiele sollen das Training für das Publikum relevant machen.
14 Stunden
Überblick
In diesem instruierten Live-Training lernen die Teilnehmer, wie sie den Technologie-Stack von iOS Machine Learning (ML) nutzen können, während sie die Erstellung und Bereitstellung einer mobilen iOS-App durchlaufen Am Ende dieses Trainings werden die Teilnehmer in der Lage sein: Erstellen Sie eine mobile App, die Bildverarbeitung, Textanalyse und Spracherkennung unterstützt Greifen Sie auf vortrainierte ML-Modelle zur Integration in iOS-Apps zu Erstellen Sie ein benutzerdefiniertes ML-Modell Fügen Sie Siri Voice-Unterstützung für iOS-Apps hinzu Verstehen und verwenden Sie Frameworks wie CoreML, Vision, CoreGraphics und GamePlayKit Verwenden Sie Sprachen und Tools wie Python, Keras, Caffee, Tensorflow, Scikit lernen, libsvm, Anaconda und Spyder Publikum Entwickler Format des Kurses Teilvorlesung, Teildiskussion, Übungen und schwere Handsonsübungen .
35 Stunden
Überblick
MLOps is a set of tools and methodologies for combining Machine Learning and DevOps practices. The goal of MLOps is to automate and optimize the deployment and maintenance of ML systems in production.

This instructor-led, live training (online or onsite) is aimed at engineers who wish to evaluate the approaches and tools available today to make an intelligent decision on the path forward in adopting MLOps within their organization.

By the end of this training, participants will be able to:

- Install and configure various MLOps frameworks and tools.
- Assemble the right kind of team with the right skills for constructing and supporting an MLOps system.
- Prepare, validate and version data for use by ML models.
- Understand the components of an ML Pipeline and the tools needed to build one.
- Experiment with different machine learning frameworks and servers for deploying to production.
- Operationalize the entire Machine Learning process so that it's reproduceable and maintainable.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
Künstliche Intelligenz Schulung, AI boot camp, Artificial Intelligence Abendkurse, AI Wochenendkurse, Artificial Intelligence Kurs, AI Training, Artificial Intelligence Seminar, Artificial Intelligence Seminare, AI Privatkurs, Künstliche Intelligenz Coaching, Artificial Intelligence LehrerArtificial Intelligence Schulung, Artificial Intelligence (AI) boot camp, Artificial Intelligence Abendkurse, AI Wochenendkurse, AI Kurs, Artificial Intelligence (AI) Training, AI (Artificial Intelligence) Seminar, Artificial Intelligence (AI) Seminare, Artificial Intelligence Privatkurs, Artificial Intelligence Coaching, Artificial Intelligence (AI) Lehrer

Sonderangebote

Sonderangebote Newsletter

Wir behandeln Ihre Daten vertraulich und werden sie nicht an Dritte weitergeben.
Sie können Ihre Einstellungen jederzeit ändern oder sich ganz abmelden.

EINIGE UNSERER KUNDEN

is growing fast!

We are looking for a good mixture of IT and soft skills in Switzerland!

As a NobleProg Trainer you will be responsible for:

  • delivering training and consultancy Worldwide
  • preparing training materials
  • creating new courses outlines
  • delivering consultancy
  • quality management

At the moment we are focusing on the following areas:

  • Statistic, Forecasting, Big Data Analysis, Data Mining, Evolution Alogrithm, Natural Language Processing, Machine Learning (recommender system, neural networks .etc...)
  • SOA, BPM, BPMN
  • Hibernate/Spring, Scala, Spark, jBPM, Drools
  • R, Python
  • Mobile Development (iOS, Android)
  • LAMP, Drupal, Mediawiki, Symfony, MEAN, jQuery
  • You need to have patience and ability to explain to non-technical people

To apply, please create your trainer-profile by going to the link below:

Apply now!

This site in other countries/regions